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then presented to an artificial neural network for analysis. In the Phase I program, positive
results were achieved in the application: of neural networks in an intelligent HSI video data
classification and analysis system for the detection of fires. The principal result of the Phase I
effort was the implementation of a proof-of-concept fire detection system. Additional results
included the development of image processing modules capable of intensity and hue
thresholding, low pass filtering, image subtraction, region detection and labeling and HSI data
normalization. In the Phase I system, these image processing modules were used to filter and
format image data for processing by a neural network. Work conducted during the Phase I
program resulted in a highly accurate neural network architecture. The Phase I neural
network was trained to recognize expanding fire regions within an image using 137 training
data sets consisting of 96 fire region sets and 41 false alarm region sets. After training was
completed, this network was presented 23 test data sets containing 17 fire regions and 6 false
alarm regions. The network demonstrated 100 percent accuracy with the training data sets
and was also 100 percent accurate with the test data sets. This system was able to demonstrate
reliable and repeatable detection of fire regions scaled to 4 bv 4 feet at a range of 150 feet. The
potential applications for this system, once fullv developed in Phase II of the program, include
installation in facilities requiring fire detection svstems. For the U. S. Air Force, this would
include aircraft hangars, ammunition depots and any facility containing high value assets and
flammable materials. Phase II of the program will accomplish the feasibility established in
Phase I by implementing a fieldable fire detection system. Part of this effort will include
converting the system module algorithms to hardware implementations, thus significantly
increasing system processing speed and reducing fire detection times to meet ever more
demanding U. S. Air Force specifications.
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EXECUTIVE SUMMARY

A. OBJECTIVE

The purpose of the work conducted under this Phase I program has been to

determine the feasibility of using machine vision techniques and neural network

computation to detect and classify visible spectrum signatures of fire iL the presence

of complex background imagery.

B. BACKGROUND

The U. S. Air Force has identified a need for rapid, accurate and reliable

detection and classification of fires. Standard fire detectors which rely on heat or

smoke sensing devices tend to be slow and tend to react only after the fire reaches a

significant size. Optical Fire Detectors (OFDs) use limited-bandwidth infrared and

ultraviolet electromagnetic sensing techniques to achieve the desired speed but lack

the necessary accuracy. OFDs have repeatedly caused the inappropriate release of

fire suppression agents which temporarily render a facility unprotected and require

the use of expensive replacement agents. An optically-based fire detection system

which captures and intelligently processes a broader range of the electromagnetic

spectrum (such as the visible region) would eliminate false alarms while retaining

processing speeds comparable to those of OFD's.

C. SCOPE

The principal result of Phase I was the development of a proof-of-concept

system which uses image processing and neural network analysis techniques for

accurate detection of fire from complex video imagery. The system developed

consists of three subsystems: image capture, image processing and neural network

analysis. The image capture subsystem extracts the hue, saturation and intensitv

(HSI) elements of a scene to form a color video image. The image processing

subsystem eliminates all regions in an image that do not possess the intensity, hue

and growth characteristics of fire. The neural network analysis subsystem compares

the hue and saturation patterns of remaining regions to the hue and saturation
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patterns of fire for a final fire/no fire determination. The proof-of-concept fire

detection system developed is slower than conventional OFD's since the image
processing routines were implemented in computer software to facilitate algorithm

development, testing and re-development for enhancement of detection accuracy.

D. METHODOLOGY

Color video image capture systems have been developed which extract either

HSI or red, green and blue (RGB) elements of a scene to form a color image. HSI
format was used in the proof-of-concept system developed since HSI characteristics

can be correlated to fire imagery attributes using less complex processing algorithms
than those required for RGB format. Neural networks were used to analyze hue

and saturation patterns of video image regions since the derivation of a

mathematical model to describe these patterns proved difficult and inaccurate.

E. TEST DESCRIPTION

The neural network employed in the proof-of-concept system developed was

trained to recognize the hue and saturation patterns of regions in a video image that

correspond to fire using 137 training data sets consisting of 96 fire region sets and 41
false alarm region sets. After training was completed, the network was presented 23

test data sets containing 17 fire region sets and 6 false alarm region sets.

F. RESULTS

The neural network used in the proof-of-concept system developed

demonstrated 100 percent accuracy with the 23 data sets. In addition, the svstem

demonstrated accurate detection of fire regions scaled to a four- by four-foot area at a
range of 150 feet.
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G. CONCLUSIONS

Experimental results suggest the following conclusions. The use of HSI video
format as opposed to RGB video format reduces processing complexity and
simplifies the interpretation of fire region characteristics. Intensity, hue and growth
characteristics of fire can be used to differentiate regions in a video image that

correspond to fire from regions that correspond to most false alarms sources.
Regions corresponding to fire can be distinguished from regions corresponding to

other false alarm sources through analysis of regional hue and saturation patterns
by a counter-propagation uni-flow neural network. Detection speed using the

algorithms employed in the Phase I proof-of-concept system would be less than five
seconds if the image processing algorithms are implemented in computer hardware.
The likelihood of a successful software-to-hardware conversion is high since high-

speed image processing hardware is readily available as off-the-shelf components.
The cost of parts for a hardware-based Phase II prototype system would be less than

$10,000. The Phase III production model system would be of immediate use to the
U.S. Air Force for implementation in aircraft hangars, ammunition depots and
other high-risk installations.

H. RECOMMENDATIONS

The primary recommendation is conversion of the software-based Phase I
proof-of-concept system to a hardware-based Phase II prototype system to achieve
desired speed requirements. Development of a Phase II prototype system would

benefit not only the U.S. Armed Forces but also private industry as reliable fire
detection systems are needed to protect key facilities such as hospitals, where a fire
could cause critical disruption of medical services, and nuclear power plants, where

a fire could result in catastrophic environmental damage.
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SECTION I

INTRODUCTION

A. OBJECTIVE

The U. S. Air Force has identified a need for rapid, accurate and reliable
detection and classification of fires. To address this need, a proof-of-concept neural

network-based, intelligent machine vision interface for the detection of fire

signatures in the visible spectrum was developed. The objective of this Phase I

program has been to determine the feasibility of using machine vision techniques
and neural network computation to detect and classify visible spectrum signatures

of fire in the presence of complex background imagery. The benefit of this SBIR

program is the development of a system capable of real-time recognition of fires
utilizing machine vision and neural network technology.

B. BACKGROUND

Standard fire detectors which rely on heat or smoke sensing devices tend to be

slow and to react only after the fire reaches a significant level. Current
electromagnetic sensing techniques have the desired speed but lack the necessary
accuracy. Optical Fire Detectors (OFD's) have repeatedly caused the inappropriate

release of fire suppression agents which can render a facility unprotected and require

the use of expensive replacement agents. In addition, OFDs can monitor only a
limited radiation bandwidth and thus can collect only limited information about

the presence of fire. The most desirable solution to this problem takes advantage of
recent advances in machine vision and neural network computing for application

in fire detection systems. The Phase I program approach to these problems

employed machine vision techniques to generate digitally filtered HSI (Hue,

Saturation, Intensity) -formatted video data. Once filtered, these data were then

presented to an artificial neural network for analysis. Neural networks have been

used successfully in the classification and recognition of complex input data such as

those found in pattern recognition applications (Nestor, 1989; Klimasauskas, 1988;

Touretzky, 1989).
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C. SCOPE

In the Phase I program, positive results were achieved in the application of

neural networks in an intelligent HSI video data classification and analysis system

for the detection of fires. The Phase I program demonstrated the feasibility of

developing a neural network video classification system which allows on-line
monitoring, detection and classification of visible-spectrum fire signatures as

derived from machine vision data. The principal result of the Phase I effort was the
implementation of a proof-of-concept fire detection system. Additional results

included the development of image-processing modules capable of intensity and

hue thresholding, low-pass filtering, image subtraction, region detection and
labeling and HSI data normalization. In the Phase I system, these image processing

modules were used to filter and format image data for processing by a neural

network. A detailed description of the system modules can be found in later

sections of this report.

Work conducted during the Phase I program resulted in a highly accurate
neural network architecture. A proof-of-concept neural network was trained to

recognize expanding fire regions within an image using 137 training data sets

consisting of 96 fire region sets and 41 false alarm region sets. After training was
completed, this network was presented 23 test data sets containing 17 fire regions

and 6 false alarm regions. The network demonstrated 100 percent accuracy with

both the training data sets and the test data sets. In addition, the system was able to

demonstrate reliable and repeatable detection of fire regions scaled to 4 by 4 feet at a
range of 150 feet. The potential applications for this system, once fully developed in

Phase II of the program, is the installation in facilities requiring fire detection

systems. For the U. S. Air Force, this would include aircraft hangars, ammunition

depots and any facilities containing high-value assets and flammable materials.
Phase II of the program will accomplish the feasibility demonstrated in Phase I by

implementing a fieldable fire detection system. This effort will include converting
the system module algorithms to hardware implementations, thereby significantly

increasing system processing speed and reducing fire detection times to meet ever

more demanding U. S. Air Force specifications.
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The overall goal of the Phase I research program was to demonstrate the

feasibility of applying neural network information processing techniques to

machine vision recognition of fire with an accuracy superior to traditional optical

monitoring techniques. The innovation developed in this program is the

application of neural network technolcgy as an intelligent interface to standard HSI

video data acquisition systems for the more accurate detection of fire regions in

background light as compared with currently available optical recognition

techniques. The goal of this research program has been to develop a sophisticated
video data interface using neural networks to provide simulated intelligence in the

identification of visible-spectrum fire signatures. Specific objectives were as follows:

1. Evaluation of the Machine Vision Data

During the completion of this technical objective, the hue, saturation

and intensity (HSI) characteristics of video imagery data of fire regions and potential

false alarm regions were examined. Comparison of these regions with the HSI

attributes of the background imagery allowed the identification of HSI characteristics

unique to flame-like regions within the imagery. Questions addressed included
which IISI fire region characteristics were well-defined and therefore could be
processed by digital filtering and which characteristics needed the high resolution

analysis of the neural network.

2. Identification and Acquisition of the Optimal Neural Network Paradigm

The goal of this technical objective was to determine and obtain the

optimal neural network paradigm and appropriate simulation software for fire

detection applications. Questions addressed included pattern recognition,
associative memories, image processing and signal classification. All of these issues
were considered in the selection of an appropriate neural network architecture.

3. Implementation of the Neural Network and Provision of User Interface

The network paradigm selected in Technical Objective 2 was

implemented during the completion of this technical objective. A

counter-propagation paradigm was implemented in the Phase I system. Questions

3



-idressed included the number of simulated neurons per layer, the number of

layers, and the number and characteristics of the inputs and outputs.

4. Training of the Selected Neural Network with the Video Flame Data

The neural network architecture implemented in Technical Objective 3

was trained in this technical objective using training data sets generated from fire
and false alarm imagery. The accuracy of the network with various numbers of

inputs was observed and the results of neural network architecture modifications

Were compared. Questions addressed during this technical objective included the

size and number of training data sets and the number of training repetitions

required before the network accuracy leveled off.

5. Evaluation of Pixel Geometries for Compactness and Reliability

The input geometries and network nodes which had no apparent or

dcleterious effects on the accuracy of the network implemented in Technical

Objective 4 were removed and the remaining architecture was adjusted for optimal
reliability. Questions addressed during this effort included the determination of

which input and node configurations ensured maximum operating efficiency and

speed. The identification of optical input characteristics was used to define the
digital image preprocessing algorithms required to generate the desired input data

set attributes.

6. Optimization of the Completed Neural Network System to Determine

Efficiency and Validity of the System

The completion of this objective entailed the design and
implementation of a proof-of-concept, neural network-based, fire detection system.

The system was designed to meet U.S. Air Force time-to-detection and resolution

requirements while maintaining significantly fewer false alarm occurrences. than

conventional optical fire detectors without degradation in fire detection sensitivity

and accuracy. Questions addressed during this technical objective included

characterization of realistic operating environments for which the system is

4



targeted, image-preprocessing algorithm speed and efficiency optimization,

anticipated false alarm scenarios and U. S. Air Force requirements of detection time

accuracy and reliability.

In the Phase II program, the development of an intelligent video data

classification and recognition interface will be finalized to include a fieldable fire

detection system for use by the United States Air Force. The implementation will

include a hardware-based, neural network system that will accept video data directly

from video capture hardware and yield an output of the probability of fire being

present and the nature of the fire. This system will be made available commercially

under a Phase III program backed by private or venture capital funding.
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SECTION II

METHODOLOGY

The goal of Phase I of this program, to evaluate the feasibility of developing a

neural network image analysis system for fire detection applications, involved a set
of experimental evaluations to satisfy the technical objectives and to establish the

basis for the design of an accurate, reliable Phase II system to be commercialized in
Phase III of the program. The Phase I technical program involved the evaluation of

HSI-fornatted flame imagery, the design of a neural network software architecture
and preprocessing digital filters needed to implement the fire detection function, the

software implementation of a proof-of-concept fire detection system and the
evaluation of the Phase I prototype software. These topics are described in the
following sections in relation to the background and associated work and to the

work performed to achieve each of the technical objectives.

A. BACKGROUND AND RELATED WORK

Standard color video image processing usually is based on techniques which
combine the red, green and blue (RGB) elements of color video imagery.
Unfortunately, RGB processing algorithms represent an inherently complex and

computationally intensive method of processing digitized video data. More recently

color video frame grabbers have been developed which are capable of real-time
video capture and generation of digitized imagery data in either RGB or hue,
saturation and intensity (HSI) format. In RGB format, each pixel of a color image is

characterized by three values which correspond to the amount of red, green and
blue needed to define the color of the pixel. To analyze an RGB image, each value
must be processed separately and then recombined to characterize image attributes.

The significance of the HSI format is that the hue data can be correlated to :he
visible spectrum "color" of the pixel, while the saturation gives an indication of

color "wash out" and the intensity indicates pixel brightness. Each of these

characteristics can be independently correlated to fire imagery attributes without

6



complex processing algorithms. This reduces the amount of processing required to

detect fire regions in a digitized video image. To capitalize on this reduction in
image processing complexity and the resulting increase in processing speed, the

Phase I fire detection system digital filtering modules process IISI-formatted video

imagery. Once the HSI data have been filtered, the imagery is processed by an

artificial neural network.

Artificial neural networks are designed to simulate the physical architecture

of the neurons in the human brain and have demonstrated significant performance

advantages over more conventional methods in pattern recognition applications.

Artificial neural networks differ from traditional pattern analysis methodology in

that the network can be "trained" by example using correlated input/output data

sets. The application of neural network simulation technology to signal processing

is becoming standard practice; however, the widespread application of such

technology to the field of complex data interpretation and classification in video
image monitoring has not yet occurred. Work has been performed in the area of

recognizing and classifying cardiac sinus rhythms (Nestor, 1989; O'Reilly, 1989) and

in the area of motor noise analysis (O'Reilly, 1989). However, these efforts have

centered on recognizing specific signal patterns from a single source and not on real-

time monitoring, classification and analysis of complex video imagery.

Typical neural network architectures support multiple node layers - an input
layer, an output layer, and one or more hidden layers. The structure of the hidden

la ers is key [o accurate and reliable network function. Too many neurons in the

hidden layer will cause the neural network simply to "memorize" the input data

files (Touretzky, 1989; Obermeier, 1989) resulting in a network which can give the
proper response to the training data sets, but which cannot extrapolate results for

data sets that differ from the training data sets (Al Ware, 1989). On the other hand,

too few simulated neurons in the hidden layers will result in a neural network
which will not properly converge during training (Pao, 1989; Khaidar, 1989;

Touretzky, 1989; Obermeier, 1989) and which will give proper results only for the

most recent set of training data, "forgetting" training data from the beginning of the

training set. Careful selection and implementation of a network paradigm can lead

to a balance between these two undesirable situations.
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The ability to train a neural network is derived from multiple

interconnections between weighted nodes (neurons). These node weights are
randomized when the network is initialized and are altered by the network as
training progresses. This allows the network to accord greater significance to certain

inputs and less to others (Klimasauskas, 1988 and 1989; Pao, 1989). In this manner a

pattern or process is learned during the training phase after which the network can
recall an associated output when presented with an input pattern similar to the

training data sets. When presented with an input pattern that is not an exact match

with a pattern involved in the training, the neural network is capable of discerning
which training pattern the unknown pattern most resembles and how similar the

patterns are. This allows the neural network to interpolate input/output

correlations as new input patterns are encountered.

Neural networks are computationally intensive during training; however,

once a network is trained, input data can be processed at extremely high throughput
rates, making neural networks a practical solution to real-time image processing

applications. Neural network simulation is a relatively new technology which, for

certain cases, has been able to define relationships between data sets that have defied

more conventional algorithms and, in other cases, has been able to identify
relationships which had previously gone unnoticed. Herein lies the strength of
neural network simulations - the ability to derive a result for a situation or pattern

never before encountered (Klimasauskas, 1988 and 1989).

The application of neural network simulation technology to video processing

is becoming standard practice, but application to the field of complex data

interpretation and reduction in video monitoring has not vet been fully developed.
Recent work on complex signal analysis has been conducted by Anderson (1990)

who used neural networks to analyze a complex simulated radar signal

environment. Research is also being conducted on the use of neural networks to
integrate and analyze the visual and acoustic cues in human speech for
machine-based speech recognition applications (Yuhas, 1990). Neural

network-based acoustic sensing has been conducted at the Siemens blower motor

manufacturing facility. Previous efforts to identify faulty motors relied on human

8



monitoring; a solution both time consuming and labor intensive. Conventional

pattern recognition techniques were also inadequate because of insensitivity to noise

differences. However, an artificial neural network system was able to identify noise

problems in motors about ninety percent of the time (O'Reilly, 1989).

In a related area, Odin Corporation using neural networks was able to identify

ignition problems in internal combustion engines. Such problems were not

detected using conventional quality control systems (EET, 1990). Work has also been

conducted in the area of recognizing and classifying cardiac sinus rhythms (Nestor,

19S9; O'Reilly, 1989). These efforts centered on recognizing specific cardiac

arrhythmias from a single sensor as opposed to continuous monitoring and

classification of multiple cardiac rhythm signals. Recent work on superconducting

neural networks has resulted in the award of two patents to the Naval Research

Laboratory in Bethesda, Maryland (Johnson, 1990).

B. EVALUATION OF DIGITIZED VIDEO IMAGERY

Technical Objective 1, the evaluation of machine vision data, was approached

through an investigation of the hue, saturation and intensity (HSI) characteristics of

digitized imagery of flame regions and false alarm regions. This section outlines the
te' "."b- r"rr am- that was conducted to determine which video data aspects are

pertinent to the problem of visible-spectrum, machine vision fire detection. The

technical effort is divided into three segments: a) aspects of a scene that should be

c. ptured in an image, b) aspects of an image that should be used to extract regions

corresponding to flames in the preprocessing stage, and c) aspects of regions

corresponding to flames that should be used as input data to the neural network.
These segments are discussed in the following sub-sections.

1. Aspects of a Scene That Should Be Captured in an Image

Video acquisition equipment can provide video data in either RGB

(Red, Green, Blue) or HSI (Hue, Saturation, Intensity) format. Hue is the spectral

aspect of a color and ranges from red to yellow to green to cyan to blue to magenta
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.d then back to red. The hue scale is a "circular" scale with red represented by both

the lowest and highest limits of the scale. Saturation is the purity of a color in

terms of how faded or deep the color appears to be. The saturation scale ranges from

completely faded (white) to completely pure. Intensity is the brightness of a color

and ranges from completely black to completely white.

The HSI representation is considered superior to the RGB representation in

image processing applications since the hue, saturation and intensity components of

a color are highly uncorrelated, i.e., highly independent of one another, whereas the

red, green and blue components of a color are highly correlated. Because hue,

saturation and intensity are highly uncorrelated, information conveyed in the HSI

representation is, in many cases, easier to interpret than information conveyed in

the RGB representation. Humans tend to interpret and to describe color in terms of

hue rather than in terms of red, green and blue quantities. For example, the color

yellow is specified by the term "yellow" instead of "equal quantities of red and green

with no blue." Since image processing algorithms are automated implementations

of how humans interpret images, more efficient algorithms can be developed as

image data are better understood.

2. Aspects of an Image That Should Be Used to Extract Fire Regions

Experimentation has shown that regions in color video imagery

corresponding to fire could be correctly extracted using hue- and intensity-level

histograms derived from the image as a whole. The hue levels displayed by regions

corresponding to fire tend to fall between red and yellow and between magenta and

red as shown in Figure 1. The intensity levels displayed by regions corresponding to

fire tend to be high as shown in Figure 2. The cutoff intensity of regions

corresponding to fire is a function of the saturation setting (not to be confused with

the HSI saturation component) of the scanning camera employed and is

experimentally obtained. Imagery used in the experimentation was obtained from a

high-resolution color CCD-based camera. The saturation levels of regions

corresponding to fire tend to occur at all levels and thus can not be used in the

region extraction process.

10
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3. Aspects of Fire Regions That Should Be Used as Input Data to the

Neural Network

Experimentation has shown that regions in a color video image

corresponding to nonfire phenomena can possess hue and intensity levels similar

to those possessed by regions corresponding to fire. Phenomena possessing hue and

intensity levels similar to those possessed by fire include direct sunlight, reflection

of sunlight from glass, reflection of sunlight from metal, reflection of sunlight from

wood and indoor lights. Further experimentation revealed that the profiles of hue-

and saturation-level histograms derived from regions corresponding to fire tend to

differ in shape from the curves of hue- and saturation-level histograms derived

from regions corresponding to other light-producing phenomena. A typical

variation in hue for regions of fire and for false alarm-regions is shown in Figure 3,

while Figure 4 shows a typical variation in saturation. Curves of intensity-level

histograms derived from regions corresponding to flames could not be

distinguished from the curves of intensity-level histograms derived from regions

corresponding to other light-producing phenomena.

Although the difference in shape between histograms derived from regions

corresponding to two dissimilar light-producing phenomena may be substantial as

shown in Figure 3, the shapes of histograms derived from regions corresponding to

similar light-producing phenomena are not exact as shown in Figure 5. The

derivation of a mathematical expression describing the histogram shape of a region

corresponding to a particular light-producing phenomena proved difficult and, in

some cases, impossible for conventional image processing algorithms. This type of

complex data interpretation represents an application which is well suited for

solution through neural network analysis techniques. Instead of developing a

closed mathematical description of histogram profiles, neural network analysis

achieves a solution through the construction of a two dimensional matrix of input

nodes, hidden layers and output nodes. The nodes contained within the matrix are

assigned analysis "weights" which give certain analysis points or nodes more

influence on the output value than other nodes. The resulting architecture can

thus develop a "best case" model for the input/output correlation and provide a

probability assessment of the correct output for a given input set.
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C. SELECTION OF NEURAL NETWORK PARADIGM

Technical Objective 2 involved the identification and acquisition of a neural

network paradigm. Preliminary efforts were directed toward the examination of
hue values from video imagery. The hue histogram of an entire image was

compiled and used as input to a neural network. Itue histogram data were 256 bytes
long with a single-digit fire indicator as an output. Initial efforts employed a

network using functional-link expansion with back-propagation of errors.

The functional-link expansion has demonstrated promise in the

identification of complex patterns without the need for excessively complex

network architectures and paradigms (Pao, 1989). The functional link expansion
paradigm is based on an expansion of the n uits by generaing functional

combinations of the original inpit -2.ues and then using these functional values as

additional system inputs- Ihis process exponentially increases the number of
effective network inputs fo. an c:'.ri data set. This recursive expansion of

the inputs has been shown to eliminate the need for hidden network layers for

some applications (Al Ware, 1989).

During the initial program efforts, some success was noted using functional

link expansion with 256 hue histogram data inputs; however, the system was

limited due to the inability of the N-Net 210 software to utilize extended memory
space for the implementation of expanded network architectures. It was determined

that the internal geometries of the pattern recognition algorithms that needed to be

developed by the neural network paradigm were too complex for an unassisted

linear network, such as functional link expansion, to model adequately. To counter

this problem, hidden layers were incorporated in the network structure. Hidden
layers have demonstrated the ability to map complex relationships between data

inputs and desired outputs (Morse, 1989; Klimasaukas, 1989).

As the network development effort progressed, it was determined that a
significant increase in the functional efficiency of the Phase I network could be

achieved without significant degradation in analysis accuracy by removing the
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functional link expansion, thereby, leaving a counter-propagation of errors model.
It was ascertained that the "function" of the functional link expansion model could
be more efficiently duplicated by adding hidden layers based on the
counter-propagation uni-flow network paradigm.

The structure of the counter-propagation uni-flow network is shown in
Figure 6. This type of network maps a set of normalized input vectors, X, to a set of
output vectors, Y. For the fire detection system developed, X consists of HH and

HS, the normalized hue and saturation histograms, respectively, extracted from an

image region obtained by the image processing subsystem that is described in
SECTION II, Subsection G, of this report. The set of output vectors, Y, consists of the

vectors [10 -10 ]t and [-10 10]t, which correspond to the conditions "fire" and "no fire",
respectively. During training, the Kohonen layer measures the cosines of the angles
between the input vectors, X, and a set of weight vectors, W. The processing
element having the weight vector that produces the smallest cosine value is
assigned the highest output value

F ire Fa se Alarm
0U tjpMt Output

tu Grossberg-Outstar Output Layer

Compet it ive
Lager

Norma I iz ing
Layer

Input Layer

Figure 6. Counter-Propagation Uni-Flow Network Architecture
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). NEURAL NETWORK IMI'LF\ItENTATION

Technical Objective 3, the implementation of the neural network and

provision of a user interface, was accomplished with the development of the Phase I

neural network architecture. The network structure evolved through three distinct

models. Initially, the neural netw'r 't':s implemented with the Al Ware N-Net

210 system as a two layer (no hidden layers) architecture with functional-link

expansion of the input. This letwo,'Ork was designed to accept 256 hue-value input

channels which were "functional link" expanded into over 1200 effective input

nodes. This model ,as designed to detect fires and identify the type of material

which was burning. The output layer of the network supported three output

channels, indicating the presence or absence of burning wood, paper, or Plexiglass.

A high value indicated the combustion of that particular fuel, while multiple high

values were manifest if there were several fuels burning. If there were no fires, all

outputs would be low.

A second version of this architecture was devPlonpd when it ,vas d.tcrnincd.'

that tne network size was larger than could be supported by the N-Net 210 System.

The second network model which was develP ped represented a modification of the

first model. In this architecture, the number of input channels was reduced to 64

values by averaging the original hue histogram values as groups of four. The 64

input channels were "functional link" expanded to 315 input layer nodes.

After meeting with the Contract Technical Monitor during the Three Month

Program Review, the definition of the network analysis function was refined and

network implementation efforts converged on a more specific application; namely,

hangar fire detection with JP-4 and JP-5 as primary fuel sources. '1he defiiiiilon of a

more detailed system application provided the basis for the development of a third

network architecture using a Neural Works Professional II development svstem.

The third and final Phase I network model is based on counter-propagation with

hidden layers and supports 128 input channels with no functional link expansion.

Sixty-four of the input channels provide hue histogram information while the

other 64 provide saturation histogram information. The output layer supports two

output channels corresponding to a fire/no fire indication.
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The finalized Phase I system architecture was designed to analyze possible fire

regions within an image. Region extraction is accomplished using digital filters for

preprocessing analysis of the image for the presence of possible fire regions before

presentation to the network. These regions are characterized by high intensity,

unique hue and unique saturation spectrums. Several sets of training and test

imagery were generated. This imagery was selected to contain flame sources,

complex background structures and possible false alarm sources. The training and

test imagery was captured using a desktop computer, commercial video digitizing

hardware, and software developed for the program effort. The system software,

which was written in C, was designed to capture an image, generate HSI histograms

and format the HSI data for input to the neural network.

E. NEURAL NETWORK TRAINING

The completion of Technical Objective 4, training of the selected nrpiral

network with the video flame data, was accomplished through the training of each

of the three network models. The data set for the first network had 256 hue-value

input data points and was designed to detect various fuel sources. The input data

expansion to over 1200 input nodes proved to be too large for full functional-link

expansion of the network. The resulting limited expansion architecture was trained

by presenting the network with correlated input/output data sets During the

training process, the network self-modified internal node weights to correct output

errors using back-propagation-of-errors techniques. The limited architecture of the

first model was unable to successfully converge to an acceptable level of accuracy.

As training progressed, network accuracy leveled off at approximately 70 percent for

a fire/no fire indication.

To address this problem, a second network was developed which represented

a ml.Jdification of the first network and supported a reduced number (64) of input

channels with a three channel output. The training files produced for the second

network had 64 input values and 3 corresponding output values. The 64 inputs

represented a four-group summation reduction of the 256-bin hue histogram. The

output fire indicators corresponded to wood, paper, and Plexiglass as fuel sources.

Modified 64 element data sets were used to train this second network. Training
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fforts on the second network evaluated both back-propagation of error techniques
and counter-propagation of error methods. This improved network architecture

converged at a more acceptable error level with over 90 percent accuracy on fire/no

fire decisions and 75 percent accuracy on fuel source classification.

The development of the third and final Phase I neural network model was

driven by network optimization efforts which occurred during the completion of

Technical Objective 5. This third model was designed to address real-world

applications as outlined by the Contract Technical Monitor such as hangar fire

detection in which primary fuel sources are JP-4 and JP-5 aviation fuel. The final

Phase I network architecture, which does not use functional link expansion, is based

on a hidden layer model which supports counter-propagation of errors. In view of

the intended system application, training and test imagery containing burning JP-4,

complex backgrounds and possible false alarm regions was digitized. After training

was completed, the final Phase I network demonstrated 100 percent accuracy on the

training and test data sets which were generated during Phase I of the program.

F. EVALUATION OF NETWORK ARCHITECTURE, NODES AND INPUT

DATA ATTRIBUTES

In order to accomplish Technical Objective 5, the evaluation of pixel

geometries for compactness and reliability, it was recognized that input data

reduction was needed to ensure high speed "real-time" fire detection while

minimizing false alarm incidents. In the Phase I system this data reduction is

achieved by simple rule criterion filtering to remove all non-flame like pixels before

image data is presented to the network for analysis. The "simple rule" criteria

which were used to reduce the input data set defined possible "dangerous" fire

region characteristics as high intensity, unique hue spectrum and significant growth.

If each of these characteristics were present in an image then the image was analyzed

by the neural network to ascertain if a region was actually fire or was a false alarm.

Initially, spatial analysis of imagery was based on section by section scans of a

rectangular grid which was overlaid on the image. Problems which were

encountered with this scanning technique included detection of flame regions
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which overlap multiple segments and identification of isolated "safe" and

"dangerous" fire regions within disassociated segments. To address these problems,
a different scanning solution using region ("blob") analysis techniques was

developed. Region analysis which uses no set pattern of image division is based on

the detection and identification of associated regions in an image. Using this type of

analysis, each object in an image becomes an individual segment in the scanning

process. As discussed previously, "simple rule" filtering is used to reduce the

number of pixels, and thus image regions, which are labeled and analyzed. The

filtering process allows areas of interest in an image to be extracted for more detailed

analysis. The application of such data reduction techniques make possible the

development of a faster, more efficient fire detection system.

Once a region is identified for more detailed neural network analysis, hue

and saturation characteristics for that region are determined. The significance of

hue information in the identification of fire regions was demonstrated during the

completion of earlier technical objectives. To achieve even more accuracy in the
fire identification process, saturation information was also provided the neural

network. The choice of a combination of hue and saturation histogram information

as network input data resulted in a significant increase in network accuracy. The

histograms were generated as 256-item linear arrays which were then reduced to 64

items each containing the sum of four consecutive array positions.

G. OPTIMIZATION OF A PROOF-OF-CONCEPT SYSTEM

Technical Objective 6, the optimization of the neural network system to

determine efficiency and validity of the system, was approached through the
implementation and testing of the Phase I proof-of-concept fire detection system

developed in the previous technical objectives. The region characteristics used to
identify possible fire regions within an image before a neural network analysis is

conducted are: (1) a consistently high intensity, (2) a consistently defined hue
bandwidth, and (3) the tendency to expand. The flame characteristic of expansion is

used to distinguish "safe" fires from dangerous fires. Dangerous fires tend to

expand in a continuous manner, whereas safe fires, after an initial expansion of

limited duration, either contract or remain constant. Examples of safe fires include
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' ie flame of a welding torch, the flame of a cigarette lighter, flames from the exhaust
pipe of a jet, and so on. A block diagram of the proof-of-concept neural
network-based fire detection system developed in the Phase I program is shown in
Figure 7.
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Figure 7. Phase I Proof-of-Concept Fire Detection System
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The Phase I system fire detection function is comprised of three subsystems:

image capture, image processing and neural network processing. A diagram of the

image capture subsystem used in the Phase I program is shown in Figure 8. Images

are digitized by a Pulnix high resolution CCD camera with RGB output. The RGB

signals from the camera are received by a Data Translation DT2871 frame grabber
board and are converted into HISI format by frame grabber system hardware.
1SI-formatted images are transferred from frame grabber memory to disk by a 25

megahertz S0386 microprocessor-based Gateway 2000 desktop host computer.

COLOR CCD
CAMERA

DT2871 FRAME

FLAMEGRABBER

HSI-FORMATTED
IMAGE

Figure 8. A Diagram of the Image Capture Subsystem

The image processing subsystem consists of eight processing steps. Beginning

with the capture of a video frame, let C denote a color digital image of a scene that

may or may not contain fire. Mathematically, C is a set of three matrices denoted by
CH , CS and C1 . Each matrix in C is an n by rn matrix containing n rows ranging

from 0 to n -1 and m columns ranging from 0 to m -1. The parameters n and m are

determined by the limitations of the scanning system utilized and were 480 and 512,
respectively, in the experiments performed during the Phase I program. Each
element of CH , CS and CI (denoted by cH (i,j), cS (i,j ) and c (i,j ), respectively) is
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.n integer ranging from 0 to 2k -1 where k is an integer greater than 0. The
parameter k is the number of bits used to contain an image element and is
determined by the limitations of the scanning system utilized. For the Phase I
experimentation, a k value of eight (1 byte) was used. The elements of the matrices
in C ranged from 0 to 255 and were represented as unsigned integer bytes during

computer processing and storage.

The element cH (i,j) of the matrix CTH represents the hue of the point in the

scene scanned corresponding to the (i,j) location in C. As explained in Technical
Objective 1, hue is the spectral aspect of a color and ranges from red to yellow to
green to cyan to blue to magenta and then back to red. The hue scale is a circular
scale with red represented by both 0 and 255. The element cS (i,j) of the matrix CS

represents the saturation of the point in the scene scanned corresponding to the (i,j)

location in C . Saturation is the purity of a color in terms of how deep or faded it
appears to be and ranges from completely white (0) to completely pure (255). The
element cI (i,j) of the matrix C I represents the intensity of the point in the scene

scanned corresponding to the (i,j) location in C . Intensity is brightness and ranges
from completely black (0) to completely white (255). Intermediate levels of intensity
irp grv level increments between completely black and completely white so that C1

represents the black and white version of the color image C . Figure 9 shows an
example of a C1 matrix that contains regions corresponding to flames. Each ordered
triplet (ctt (i,j ), cS (i,j ), cI (i,j ))=c (i,j ) of C is called a pixel of C.

The first processing step, intensity thresholding, locates the pixels in C that
have intensity levels equal to the intensity levels of fire. The input of this
processing step is C1 . The output is an n by rn binary matrix T I where ti (,1 )=I, if

cI (i,j ) is greater than or equal to IMi n while tI (i,j )=0, if c, (i,j ) is less than IN/n
The pararmcter [Mi n  is defined to be the lowest intensity value consistentlv

observed for fire, and is a function of the camera saturation setting,. In the
experiments performed during Phase 1, Ii n was set to 150. Figure 13 shows the T,

matrix obtained from the image in Figure 9 where gray represents the value I and

white represents the value 0.
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The second processing step, hue thresholding, locates the pixels in C that

have hue levels equal to the hue levels of fire. Experimentation has shown that the

hue levels of flames fall between 0 (red) and 50 (yellow), and between 200 (magenta)
and 255 (red). The inputs of this processing step are C11 and T,. The output is an

tz by m binary matrix T. , where tH (i,j )=1, if cH (i,j) is either between 0 and -50 or

between 200 and 255; otherwise, t1 (i,j )=O. Figure 11 shows the Tp1 matrix obtained

from the image in Figure 9, where gray represents the value 1 and white represents

the value 0.

BACKGROUND

f4

,- -... FIRE .' . ..
A I. '- 'i -

Figure 11. Hue Thresholded Imagery of Fire Regions

The third processing step, merging of thresholded images, performs the
logical ANDing of T I and TH . This operation is illustrated in Figure 12. The

output image of this processing step, T, is an n by m binary image where t (i ,j )=I,
if tI (i ,] )=I and tH (i ,J )=I; otherwise, t (i j )=0. Thus, t (i ,j )=1 if the intensity value
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and the hue value of the pixel at location (i ,j ) in C are within the intensity and hue
ranges, respectively, defined for fire. Figure 13 shows the T matrix obtained from
the image in Figure 9, where gray represents the value 1 and white represents the

value 0.

T, LOGICAL AIND
... OPERATION

t I (ij) tH (i,j) t(i,j) T

0 0 0
01 0 - El
1 0 0
1 1 1

TH

Figure 12. The Logical ANDing Operation of T, and TH

BACKGROUND

Figure 13. The T Matrix Image Obtained from the Logical ANDing of T, and TH
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The fourth processing step, low-pass filtering, removes high frequency values
from T, i.e. the edges in T are smoothed as shown in Figure 14. The purpose of this
processing step is to remove high frequency noise caused by fire flicker, since

inaccurate determination of fire expansion in the growth analysis processing step

has been observed to occur if this noise is unattenuated. In addition, edges of fire

regions tend to be semi-transparent and may exhibit corrupted HSI characteristics.
The output of this processing step is an n by rn binary matrix F, where f(i,j )=, if
t il~-1)= t 0-lj) t (i -l,j+l) =t (i~j-1) =t (ill') = t (I,]j.+1) = t+lj-1) =tOi+l1J)

=t (i +1,j +1)=1; otherwise, f(i,j )=O. This operation is illustrated in Figure 15. Figure
16 shows the F matrix obtained from the image in Figure 9, where gray represents

the value 1 and white represents the value 0.

Figure 14. Results of Low Pass Filtering on a Region

I t ) ifi-I 1 f) ] I 1

fi,ji) = it ,:i) t(i;) t(i i- ) - I I 1

t(I+1,j-1) (i+1,j) t(ifG-+ j I) 1 1 I

f(i,j) = 0, otherwise

Figure 15. Low Pass Filtering Operation
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Figure 16. Low Pass Filtered Imagery of Fire Regions

The fifth processing step, image subtraction, subtracts Ft from Ft _ At where

Ft denotes the F matrix obtained from the image scanned at time t. The term Ft -At
denotes the F matrix obtained from the image scanned at time t - At. Here t

denotes time (in seconds) and At denotes a predetermined increment of time (in

seconds) that is limited by the scanning speed of the system utilized. The

information obtained in this processing step is required for the growth analysis

operation performed in the next processing step. The output of this processing step
is an n by m integer matrix S where s (I ,j )= ft - At (i J )-f t (i ,j ). Ifft -At (i ,j )=1 and
ft( U, )-0, then s (i ,j )=I and flame contraction is implied. If ft -At (i ,* )=0 and ft (i ,j)
=1, then s (i ,j )=-1 and flame expansion is implied. If ft -At (i j )= ft (i ,j ), then s (i ,j)

=0 and flame constancy is implied. Figures 17 and 18, show black and white images

scanned at times t and t - At, respectively. Figure 19 shows the S matrix obtained
from the images shown in Figures 17 and 18 where black represents the value I

(contraction), gray represents the value -1 (expansion) and white represents the

value 0 (constancy).
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The sixth processing step, growth decision, determines whether there has
been sufficient flame growth in At seconds to warrant further analysis of the image
scanned at time t . The input of this processing step is S . Let N denote the

smallest number of 8-connected pixels that can be correctly identified by the neural

network as corresponding to flames. The locations of the pixels that are 8-connected
to a pixel at location (i,j) are defined to be (i -1,j -1), (i -1,j ), (i -1,j +1), (i,j -1), (i,j +1),
.i,+1,j -1), (i +l,j) and (i +,j +1). If the number of expansion elements in S is greater

than or equal to 0.05-N, (5 percent of N, ), the image scanned at time t is processed

further; otherwise, a new image is scanned at time t +At and the processing begins
again at the first processing step. Thus, the processing of the image scanned at time t

is continued, if and only if, a fire growth size greater than or equal to 5 percent of the
area of the smallest fire region detectable by the neural network occurs in At

seconds.

BACKGROUND-

Figure 17. Gray-Scale Intensity Imagery of Scene at Time "t"
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4BACKGROUND

Figure 18. Gray-Scale Intensity Imagery of Scene at Time "t - At"

BACKGROUND

~F IRE

Figure 19. Subtraction Matrix of 'T' from "t - At" Imagery
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The seventh processing step, region detection and labeling, labels the

8-connected regions believed to be fire in the F matrix obtained from the image

scanned at time t. The output of this processing step is an n by m integer matrix R

where r (i,j )= r(k,l ) if f (i,j) and f (k,l) belong to the same 8-connected region;

otherwise, r (i,j) does not equal r (k,l). Region labeling is accomplished by first

setting the elements in R equal to 0. Let L denote the current region label; initially,

L =0. Next, a row-by-row and column-by-column scan is performed on F. If f(i,j )=I

(possible flame) and r (i,j )=0 (unlabeled) then L is incremented and r (i,j) is set

equal to L . The elements in F that are equal to 1 and whose corresponding

elements in R are 8-connected to at least one element in R equal to L are set equal

to L . The row-by-row, column-by-column scan of F is then resumed at location

(i,j +1). After the scan of F is completed, the labels of 8-connected regions in R
possessing areas smaller than N are set equal to 0 since fire regions possessing

areas smaller that Np are undetectable by the neural network. The Phase I neural
network was able to detect fire area (Np) of less than 1,000 pixels which scale to

approximately a four foot by four foot fire region at a range of 150 feet. Figure 20

shows the R matrix obtained from the image shown in Figure 9 where white

represents the value 0 and gray represents all other values.

The eighth and final processing step, histogram extraction, generates the hue

and saturation histograms from C for each labeled region defined by R . The inputs
of this processing step are CH , CS and R. Let HpH and HIS denote the hue and

saturation histograms obtained from CH and CS , respectively, for a region in R

defined by label L. H H and H S are real vectors of size 2 k where k is defined in

earlier paragraphs in this section. Initially hH (i ) and h1S (i) are set equal to 0 for

i =0,...,2 k -1. Then for each r (i,j)=L , hH (a) and hS (b ) are incremented where a--

cH (i, 1) and b = cS (i,j). The histograms are then normalized with respect to area by

dividing each element of HH and H S by NL where NL is the number of pixels

comprising the region in R defined by label L . Each sum hH (i) + hH (i +1) +

hf- (i +2) +hH (i +3) and hS (i )+h S (i +1) +hs(i+2) +hS (i +3), i= 0 ,4 ,8 ,..., 2 k - ,

constitutes an input to the neural network for the region in R defined by label L.
Adjacent elements of HH and H S are combined in this manner due to the limited

number of neural network input nodes available in practical networks. Based on the
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information provided by the image processing subsystem, the neural network

subsystem makes a fire/no fire determination for the region in R defined by label L.

This procedure is performed for all L in R (except L =0).

BACKGROUND

FIRE

Figure 20. Possible Fire Regions Detected Within Imagery
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SECTION III

EXPERIMENTAL RESULTS

This section contains a compilation of the results of the software and

hardware development and evaluation conducted to meet the Phase I Technical

Objectives. The goal of this program was the development of a Phase I prototype

system which demonstrates the feasibility of the development of an artificially

intelligent fire detection system using neural network processing techniques. This

section describes the results of the Phase I program development effort.

A. EVALUATION OF DIGITIZED VIDEO IMAGERY

The completion of Technical Objective 1, the evaluation of machine vision

data, resulted in an investigation of the hue, saturation and intensity (HSI)

characteristics of digitized imagery of flame regions and false alarm regions. The

video data studied consisted of the hue-, saturation- and intensity-level histograms

of images scanned under varying lighting conditions. The images which were

scanned contained regions corresponding to flames (fueled by JP-4, wood, paper,

butane and Plexiglass), direct sunlight, reflected sunlight from glass, reflected

sunlight from metal, reflected sunlight from wood, and indoor lights. The hue

levels of regions corresponding to flames were found to lie between red (0) and

yellow (50) and between magenta (200) and red (255). The intensity levels of regions

corresponding to flames were found to lie above 150 at maximum or

near-maximum camera saturation settings. The saturation levels of regions

corresponding to flames were found to span the entire saturation scale. The curves

of hue- and saturation-level histograms of regions corresponding to flames were

found to differ substantially in shape from the curves of hue- and saturation-level

histograms of regions corresponding to other light-producing phenomena. The

curves of intensity-level histograms of regions corresponding to flames and regions

corresponding to other light-producing phenomena could not be distinguished.
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B. SELECTION OF NEURAL NETWORK PARADIGM

The accomplishment of Technical Objective 2 involved the identification and

acquisition of a neural network paradigm. The completion of this objective resulted

in the evolutionary development of three network models. The functional link

expansion paradigm which is based on an expansion of the system inputs by

generating functional combinations of the original input values and then using

these functional values as additional system inputs represents the first network

paradigm which was developed during the Phase I program. This model contained

no hidden layers and supported back-propagation of errors with over 1200 effective

input nodes and three output nodes. The second model which was developed

represented a modified version of the first model with 128 input nodes. The third

and final network paradigm which was developed supported hidden layers,

counter-propagation of errors, 128 input nodes with no functional link expansion

and a two node fire/no fire output layer.

C. NEURAL NETWORK IMPLEMENTATION

The completion of Technical Objective 3, the implementation of the neural

network and provision of a user interface, resulted in the development of the Phase

I neural network architecture. The network structure evolved through three

distinct advances in paradigm accuracy, efficiency and speed. The initial network

model was designed to support a two layer (no hidden layers) architecture with

functional-link expansion of the input corresponding to 256 hue value input

channels which were expanded into over 1200 effective input nodes. This model

was designed to detect fires and identify the type of material which was burning. It

was found that the efficiency and speed of this type of paradigm could be enhanced

by reducing the complexity of the input layer nodes from over 1200 to 64. This

reduced input paradigm was implemented as a second network model.
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Meetings with the Contract Technical Monitor resulted in a more detailed

definition of the network analysis function and network implementation efforts
converged on a more specific application; namely, hangar fire detection with JP-4

and JP-5 as primary fuel sources. The definition of a more detailed system

application provided the basis for the development of a third network architecture

which could analyze hue and saturation information and provide a fire/no fire

output response. During the development of the final Phase I network model,

training and test data sets were generated from video imagery containing regions

corresponding to flames fueled by JP-4, direct sunlight, reflected sunlight from glass,
reflected sunlight from metal, reflected sunlight from wood, and indoor lights.

D. NEURAL NETWORK TRAINING

The completion of Technical Objective 4, training of the selected neural

network with the video flame data, resulted in the training of each of the three

network models. The training data set for the first network had 256 hue histogram

bins representing imagery containing flame regions from various fuel sources. The
training process used back-propagation of error techniques to modify internal node
weights. This first network model was unable to successfully converge to an

acceptable level of accuracy. As training progressed, network accuracy leveled off at

approximately 70 percent for a fire/no fire indication.

The second network architecture represented a modification of the first

network and supported a reduced number (64) of input channels with a three
channel output. The training files produced for the second network had 64 hue
input values and 3 corresponding output values. The 64 input bins represented a

four-group summation reduction of the original 256-bin hue histogram input data
used by the first model. The output fire indicators corresponded to wood, paper, and

Plexiglass as fuel sources. Training efforts on the second network evaluated both

back-propagation of error techniques and counter-propagation of error methods.
This improved network architecture converged at a more acceptable error level with

over 90 percent accuracy on fire/no fire decisions and 75 percent accuracy on fuel
source classification.
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The third and final Phase I network model was designed to address real-world
applications as outlined by the Contract Technical Monitor such as hangar fire

detection in which primary fuel sources are JP-4 and JP-5 aviation fuel. The final
Phase I network architecture is based on a hidden layer model which supports

counter-propagation of errors. In view of the intended system application, training
and test imagery containing burning JP-4, complex backgrounds and possible false
alarm regions was digitized. After training was completed, the final Phase I network

demonstrated 100 percent accuracy for fire/no fire indications.

E. EVALUATION OF NETWORK ARCHITECTURE, NODES AND INPUT

DATA ATTRIBUTES

The completion of Technical Objective 5, the evaluation of pixel geometries
for compactness and reliability, resulted in the development of pre-network
processing digital filtering algorithms for data reduction to ensure high speed
"real-time" fire detection while minimizing false alarm incidents. The result of this

effort was the implementation of a series of simple rule criterion filters to remove
all non-flame like pixels before image data is presented to the network for analysis.
The "simple rule" criteria which were used to reduce the input data set defined

possible "dangerous" fire region characteristics as high intensity, unique hue

spectrum and significant growth.

If each of these characteristics were present in an image then regions within
the image were analyzed by the neural network to ascertain if a region was actually
fire or was a false alarm. This spatial scanning process which was initially based on
uniform grid segme2nts was later changed to a different scanning solution using
region ("blob") analy,is techniques. Problems which were encountered with grid

scanning included detection of multiple segment flame regions and identification of
isolated regions within disassociated segments. Using region analysis, each
associated object in an image becomes an individual segment in the scanning
process. "Simple rule" filtering is used to reduce the number of pixels, and thus
image regions, which are labeled and analyzed. The application of the previously

discussed data reduction techniques resulted in the development of a faster, more
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efficient Phase I system. The final Phase I network was trained to analyze both hue
and saturation characteristics in each region of interest. The choice of a combination

of hue and saturation histogram information as network input data resulted in a
significant increase in network accuracy.

F. OPTIMIZATION OF A PROOF-OF-CONCEPT SYSTEM

The accomplishment of Technical Objective 6, the optimization of the neural
network system to determine efficiency and validity of the system, resulted in the
implementation and testing of the Phase I proof-of-concept fire detection system

developed in Technical Objectives 1 through 5. Work conducted during the Phase I
program resulted in a highly accurate neural network architecture. The final Phase I
neural network was trained to recognize expanding fire regions within an image
using 137 training data sets consisting of 96 fire region sets and 41 false alarm region
sets. These data sets included flames fueled by JP-4, direct sunlight, reflected
sunlight from glass, reflected sunlight from metal, reflected sunlight from wood,
and indoor lights. After training was completed, the network was presented 23 test

data sets containing 17 fire regions and 6 false alarm regions. The network
demonstrated 100 percent accuracy with the training data sets and was also 100
percent accurate with the test data sets. The system was also able to demonstrate
reliable and repeatable detection of fire regions scaled to 4 by 4 feet at a range of 150

feet.
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SECTION IV

CONCLUSIONS, TECHNICAL FEASIBILITY AND RECOMMENDATION

In this section of the report, major conclusions are presented based on the
results of the Phase I project and information available during the study. These

conclusions are followed by a discussion of the technical feasibility of each objective
and the degree to which each objective has been met. Finally, the potential

applications of the program are discussed with regard to use by the Federal

Government and in potential commercial applications.

A. CONCLUSIONS

Based on the results presented in this report and other results obtained

during this study, it is possible to draw the following conclusions.

" Experimental results suggest that HSI video format is superior to RGB video
format in this particular application. The use of HSI format imagery reduces
processing complexity and simplifies the interpretation of region

characteristics.

" Regions corresponding to flames in a video image can be segmented from the
rest of the image based on a thresholding scheme involving the hue- and

intensity-level histograms of the entire image. The use of threshold filtering

reduces the computational overhead required by video frame analysis

techniques.

" The profiles of hue- and saturation-level histograms of regions corresponding
to flames can differ significantly in shape from the curves of hue- and

saturation-level histograms of regions corresponding to other light-producing
phenomena while the profiles of intensity-level histograms of regions

corresponding to flames and regions corresponding to other light-producing
phenomena could not be easily distinguished. These findings indicate that
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there exists the possibility of using hue and saturation information in

machine vision imagery to detect the presence of flame in a complex false

alarm background.

* For a given application, optimization of the neural network processing

architecture by restructuring input layers, by adding hidden layers and by

selecting error propagation techniques can contribute significantly to

improved system performance. For hangar fire detection applications, it was

found that an architecture which can process hue and saturation histogram

data using hidden layers and counter-propagation of errors provides a highly

accurate fire detection capability.

* Experimental results suggest that the neural network-based system developed

during the Phase I program can correctly extract regions corresponding to

flames (fueled by JP-4) as well as regions corresponding to other

light-producing phenomena and can accurately identify each region as a
"safe" fire, a "dangerous" fire or a false alarm incident.

* Experimental work conducted during the Phase I program indicates that a

neural network-based fire detection system which uses machine vision

techniques is feasible provided the software algorithms developed for the

Phase I proof-of-concept system can be successfully translated into high speed
hardware. The likelihood of such a software-to-hardware translation being

successful is high as high speed image processing hardware is readily

available as off-the-shelf components.

B. TECHNICAL FEASIBILITY AND EXTENT TO WHICH PHASE I OBJECTIVES

HAVE BEEN MET

This discussion of technical feasibility considers the Phase I program

objectives and technical findings and the state of the art as reflected in the literature.

Technical Objective 1 was achieved by evaluating the characteristics of visible

spectrum machine vision imagery of fire regions in complex false alarm
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backgrounds. It was shown that fire regions can be differentiated from false

alarm regions using the unique characteristics of region hue and saturation

histogram profiles.

Technical Objective 2 was achieved by the selection of an optimal neural

network paradigm for use in the Phase I proof-of-concept system. The

selection process began with a functional link expansion architecture which

supported back-propagation of errors, 1200 effective input nodes and no

hiddr, layers. As the program progressed, the number of input nodes was

reduced and the architecture was modified to support hidden layers and

counter-propagation of errors.

Technical Objective 3 was achieved through the implementtion of the

neural network architectures which were selected in the previous technical

objective. The development of each of the three architectures was

accomplished successfully with full implementations of the second and third

models and a limited implementation of the first model which supported

1200 input nodes and suffered some performance degradation due to

hardware memory limitations.

• Technical Objective 4 was achieved through the training of the neural

network architectures implemented in the previous technical objective.

Training was accomplished using training data sets generated from fire,

background and false alarm imagery. The accuracy of the network with

various numbers of inputs was observed and the results of neural network

architecture modifications were compared.

Technical Objective 5 was achieved with the evaluation and optimization of

various input data geometries. Input optimization efforts included the

development of digital preprocessing filters and the determination of which

input and node configurations ensured maximum operating efficiency and

speed.
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In order to achieve Technical Objective 6, the Phase I proof-of-concept neural

network system was tested and refined for optimal performance in hangar

fire detection applications. Optimization efforts included the improvement

of overall system module architecture, enhancement of the preprocessing

digital filter algorithms, optimization of network input layer structure and

the addition of hidden layers within the neural network architecture. Phase I

test results indicate that the development of a neural network-based fire

detection system is feasible.

Each of the specified technical objectives for the Phase I project was achieved,

indicating the feasibility of the technical program to develop a neural network-based

fire detection system using machine vision techniques. In conclusion, the Phase I

program has indicated that the development of such a system is feasible and

technically practical.

C. RECOMMENDATION

1. Potential Use by the Federal Government

The neural network fire detection system being developed by this

program can be used by all branches of the Federal Government. This system,

which is based on a trainable neural network, is readily adaptable to numerous

detection environments and can find immediate use in any application requiring a

fire detection system. It is envisioned that the system would be installed in high

risk areas where high value assets and flammable materials present the potential for

highly destructive fires. The completion of Phase II of this program, which is

funded by the U.S. Air Force, would result in a fieldable fire detection system capable

of immediate use in aircraft hangars, ammunition depots and other high-risk, high

value installations.

2. Potential Commercial Applications

Commercial application of the fire detection system being developed by

this program will probably occur initially in industry where flammable materials
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and ignition sources are often in close proximity. In such cases, fire can represent a
significant threat. The system could also be used to protect . , _.,ities such as
hospitals, where a fire could cause a critical disruption of medical services, 3r

nuclear power plants, where a fire could result in catastrophic environmental

damage. Since the system is automated, applications migl , include monitoring
of remote installations where more conventional manual fire detection and
suppression methods are impractical or unavailable. Other applications outside of
fire detection can be found in science where the system can be used for analysis of

chemical processes or in industry where the system could monitor manufacturir.g

processes.

3. Follow-On Funding Commitment

A follow-on funding commitment from Venture Resources, Inc. for
Phase III commercialization of the neural network-based fire detection system

developed under Phase II of the program has been arranged.
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